PhD Studentship: Modelling the flow of glass during the draw of microstructure optical fibres.

United Kingdom
Jan 25, 2016
Jan 23, 2017
Organization Type
University and College
Full Time

PhD Studentship: Modelling the flow of glass during the draw of microstructure optical fibres.

Aerodynamics & Flight Mechanics Research Group

Location:  Highfield Campus
Closing Date:   Sunday 22 January 2017
Reference:  682616AK

Project Reference: NGCM-003

Microstructured Optical Fibres (MOFs) are a novel, potentially revolutionising, type of optical fibres that use wavelength-scale internal structures to guide and manipulate light. Examples of MSFs include suspended core fibres, where thin membranes suspend a glass core in the centre of a hollow tube, and hollow core photonic bandgap fibres (HCPBGF), in which a hollow core is surrounded by a honeycomb structure to guide light in air. The fibres are made from a larger scale glass preform which is heated and drawn down in size to produce long lengths of fibre. During the draw, heat and various gas pressurisation methods are applied to control the internal structure towards the desired geometry. Currently, manufacturing a specific design is extremely challenging and time consuming since the large parameter space is typically scanned empirically by trial and error.

The project proposes the development and application of a fluid model that will predict the internal microstructure evolution from initial preform designs, draw parameters and material data. This project involves strong collaboration with the Microstructured Fibre group at the Optoelectronic Research Centre (ORC), one of the world-leading groups in MOF-related research

The project would consist of several stages:
1. Development of model with simple geometry and experimental validation .
a. Coordinate with researchers at the ORC.
b. Design a range of geometries which will be fabricated at the ORC and compare.

2. Advancement of the model:
a. Integrate with existing codes that examine optical loss of the structure.
b. Include the different heating regimes of radiation or conduction.
c. Investigate capability to run parametric sweeps using HPC facilities and GPU technology.

3. Use of the model to aid fabrication and fibre development:
a. Conduct perturbation analysis by simulating defects or contaminants.
b. ‘Virtually draw’ designs recommended by theorists for low loss.
c. Explore novel fibre concepts, such as multicore hollow core fibres, mixing glass types and inclusion of metallic components.
d. Identify appropriate compromises so theoretical designs can be fabricated whilst maintaining low loss features.

If you wish to discuss any details of the project informally, please contact John Shrimpton, Aerodynamics and Flight Mechanics research group, Email:, Tel: +44 (0) 2380 59 24894.

This project is run through participation in the EPSRC Centre for Doctoral Training in Next Generation Computational Modelling ( For details of our 4 Year PhD programme, please see

For a details of available projects click here

Visit our Postgraduate Research Opportunities Afternoon to find out more about Postgraduate Research study within the Faculty of Engineering and the Environment:

Further details:

  • Job Description and Person Specification

Similar jobs

Similar jobs