Skip to main content

This job has expired

Phd Studentship: Woodland insect responses to climate change

Employer
Global Academy Jobs
Location
United Kingdom
Closing date
Jan 1, 2019

Job Details

Details

Forest/woodland systems are major source of biodiversity globally and also play a crucial role in carbon capture/mitigating against rising CO2 levels. Thus, sustaining healthy woodland systems is very important, and insects are critical to this endeavour. Insects overwhelmingly dominate forest biodiversity from canopy to soil, and the fate of insects and plants within a woodland system are inextricably linked. Insects play a direct role in shaping community structure, plant reproduction through pollination, as well as linking above- and below-ground processes via their roles in nutrient dynamics (Frost and Hunter 2004). Herbivorous species can hugely impact upon carbon budgets, and are able to switch small carbon sinks to large net carbon sources (Kurz et al. 2008). As poikilotherms their life history is largely dictated by temperature variability (Bale and Hayward, 2010), which combined with their short life cycles and complex behavioural repertoires, mean that insects can provide the earliest and most detailed indicators of climate change impacts on forest systems. Many insect species will also quickly respond to elevated CO2 (eCO2) as a result of altered leaf chemistry and the physical properties of plants (Gherlenda et al. 2015). Our understanding of these plant insect interactions within complex woodland systems remains in its infancy, and this project will take advantage of the state-of-the-art Birmingham Institute of Forestry Research (BiFoR) Free Air Carbon dioxide Enrichment (FACE) facility (http://www.birmingham.ac.uk/research/activity/bifor/index.aspx) to investigate these relationships.

The three core objectives are to determine how:
1. eCO2 alters insect diversity, abundance and phenology
2. Influences plant-herbivore interactions
3. Impacts on key pollinator species

Objective 1 represents a very broad assessment of insect community change using well established field sampling methods that have already been running at the site for the past 3 years. Objective 2 will document herbivory in key species such as leaf miners and aphids, as well as lab-based assessments of how eCO2 might influence this interaction, e.g. changes in plant biochemistry and/or production of volatiles. Objective 3 will also investigate plant-insect interaction dynamics, as well as if pollinator phenology patterns are losing synchrony with woodland plant flowering.
This project builds on an existing collaboration between Hayward (Biosciences) and Sadler (GEES), but brings in a new collaboration with Pfrang (GEES). This integrates expertise in insect physiological responses to climate variability with landscape ecology and plant-insect interactions through volatile production. The proposed work directly addresses a fundamental aim of BIFoR: to enhance our understanding of how environmental change will impact on woodland systems. The DR will have every opportunity to engage with the extensive rolling programme of stakeholder engagement activities in both the Hayward lab and BIFoR.
Any further questions about the project, please contact: Dr Scott Hayward.

 

Funding Notes

CENTA studentships are for 3.5 years and are funded by NERC. In addition to the full payment of their tuition fees, successful candidates will receive the following financial support:

Annual stipend, set at £14,777 for 2018/19
Research training support grant (RTSG) of £8,000

 

References

Bale and Hayward (2010) Insect overwintering in a changing climate. Journal of Experimental Biology 213: 980-994
Frost and Hunter (2004) Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in oak mesocosms. Ecology 85:3335-3347.
Gherlenda et al. (2015) Responses of leaf beetle larvae to elevated [CO2] and temperature depend on Eucalyptus species. Oecologia 177: 607-617.
Kurz et al. (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452: 987-990

Company

Global Academy Jobs works with over 250 universities worldwide to promote academic mobility and international research collaboration. Global problems need international solutions. Our jobs board and emails reach the academics and researchers who can help.

"The globalisation of higher education continues apace, driving in turn the ongoing development of the global knowledge economy, striving for solutions to the world’s problems and educating a next generation of leaders and contributors."

Company info
Website

Get job alerts

Create a job alert and receive personalized job recommendations straight to your inbox.

Create alert